5930

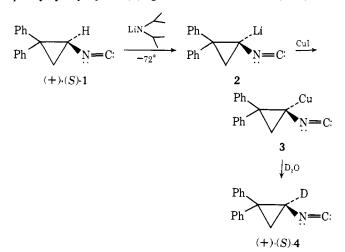
These cations should contain stronger Ti-O bonds than the electrically neutral Ti(dik)₂(OR)₂ complexes; yet the cations are nonrigid on the NMR time scale at -105° . The question of bond rupture vs. twisting is not settled by the NMR spectrum of the triacetylmethanate (triac) complex studied by Baggett et al.⁶ since internal rotation in the partly dissociated triac ligand probably is slow at 35°; for Co- $(triac-d_3)_3$, linkage isomerization is nine times slower than inversion at 105.2° and ΔH^{\ddagger} for linkage isomerization is higher by 8 kcal/mol.¹⁰

Acknowledgment. The support of this research by National Science Foundation Grants GP-30691X and MPS7424297 is gratefully acknowledged.

References and Notes

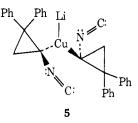
- K. Mislow and M. Raban, *Top. Stereochem.*, 1, 1 (1967).
 S. S. Eaton, J. R. Hutchison, R. H. Holm, and E. L. Muetterties, *J. Am. Chem. Soc.*, 94, 6411 (1972); S. S. Eaton, G. R. Eaton, R. H. Holm, and E. L. Muetterties, ibid., 95, 1116 (1973), and references therein.
- (3) M. C. Palazzotto, D. J. Duffy, B. L. Edgar, L. Que, Jr., and L. H. Pignolet, J. Am. Chem. Soc., 95, 4537 (1973); L. Que, Jr., and L. H. Pignolet, Inorg. Chem., 13, 351 (1974), and references therein.
- (4) B. Jurado and C. S. Springer, Jr., Chem. Commun., 85 (1971).
- (5) The following abbreviations are used in this paper for β -diketonate (dik) anions: acac, acetylacetonate; dpm, dipivaloyimethanate; bzac, benzoylacetonate: bzbz, dibenzoylmethanate; triac, triacetylmethanate
- (6) N. Baggett, D. S. P. Poolton, and W. B. Jennings, J. Chem. Soc., Chem. Commun., 239 (1975).
- (7) D. C. Bradley and C. E. Holloway, J. Chem. Soc. A, 282 (1969). (8) J. F. Harrod and K. Taylor, J. Chem. Soc., Chem. Commun., 696 (1971).
- (9) N. Serpone and R. C. Fay, Inorg. Chem., 6, 1835 (1967).
- (10) R. C. Fay and U. Klabunde, unpublished results cited in N. Serpone and D. G. Bickley, Prog. Inorg. Chem., 17, 391 (1972).

Robert C. Fay,* Alan F. Lindmark


Department of Chemistry, Cornell University Ithaca, New York 14853 Received June 25, 1975

Cyclopropane. XXXVII. A Stable Chiral Copper Reagent¹

Sir:


In general, organocopper reagents are stereochemically unstable at ambient temperatures. This seems to be the case whether the copper is bound to an sp^3 or sp^2 carbon atom or whether or not the copper(I) is coordinated to stabilizing ligands.^{2.3} We wish to report on the preparation of the first optically stable copper(I) reagent in which the copper(I) is directly attached to the chiral center.⁴

Recently⁵ we reported that 1-lithio-1-isocyano-2,2-diphenylcyclopropane (2), generated from chiral (+)-(S)-1-

isocyano-2,2-diphenylcyclopropane (1) by reaction with lithium diisopropylamide, is capable of maintaining its configuration at temperatures between -52 and -72° but racemizes at -5° . Treatment of **2**, formed at -72° in tetrahydrofuran, with cuprous iodide and allowing the temperature to slowly rise⁶ to 10° over a period of 30 min produced 3. The reaction mixture was hydrolyzed with water to regenerate (+)-(S)-1 in 20% yield⁷ and an optical purity of 95%. In another experiment the reaction mixture was quenched with deuterium oxide to yield (+)-(S)-4 (16% yield)⁷ with retention of configuration (98% optical purity) and 90 \pm 1% deuterium incorporation. The configurational stability of 3 was unaffected by an increase in temperature and length of reaction time. For example, addition of cuprous iodide to 2 at -70° and allowing the reaction mixture to warm up to room temperature (23°) over a period of 30 min followed by deuterium oxide deuterolysis yielded (+)-(S)-4 (70%) yield)⁶ with an optical purity of 91% and with 89% deuterium incorporation. Repeating this experiment but changing the reaction time from 30 min to 2 hr did not affect the stereochemistry nor the amount of deuterium incorporation. Based on these data it is concluded that 3 represents the first stable chiral organocopper(I) compound having an asymmetric carbon atom directly attached to copper(I).

We have observed that the addition of either 1 equiv of N, N, N', N'-tetramethylethylenediamine (TMEDA), 2 equiv of triglyme, or 2 equiv of 15-crown-5 to a tetrahydrofuran solution of 2 at -72° did not affect the configurational stability.⁸ Also, in the case of 3, the addition of TMEDA at 23° for 30 min did not alter the stereochemical behavior but the addition of crown ether did have an effect. Thus, to a tetrahydrofuran solution of 3 at 23° 1 equiv of TMEDA was added, stirred for 30 min, and quenched with deuterium oxide to give 4 in 84% yield. The optical purity was found to be 94% and the deuterium incorporation was 95%. However, when the reaction was carried out using 1 equiv of 15-crown-5 a mixture of 1 and 4 was isolated (40% vield) with an optical purity of 88% and a deuterium content of 70%. Moreover, if the reaction time was increased to 12 hr at 23°, the optical purity of the product (20% yield) was reduced to 68% and the deuterium content was very low,⁹ 19%.

The chiral cuprate (I) 5 has also been prepared by the addition of 0.5 equiv of cuprous iodide to 1 equiv of 2 at -72° and allowing the temperature to rise to -5° over a period of 30 min.⁶ Quenching the reaction mixture with deuterium oxide yielded 4 which was 97% optically pure with 33% deuterium incorporated. However, if the reaction is run at 10° and then quenched with deuterium oxide the deuterium content of 4 remains the same but the optical purity is decreased to 70%.

A comparison of the optical stabilities of 2, 3, and 5 indicates that the order of stability is 3 > 5 > 2. Further studies on the configurational stabilities of isocyano carbanions are in progress.

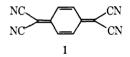
References and Notes

(1) The support of this work by a Public Service Research Grant No. CA 04065, from the National Cancer institute, is gratefully acknowledged as is a grant from the Donors of the Petroleum Research Fund, administered

Journal of the American Chemical Society / 97:20 / October 1, 1975

by the American Chemical Society.

- (2) For excellent review articles see, G. H. Posner, Org. React. 19, 1 (1972); 22, 253 (1974); H. House, Proc. Robert A. Welch Found. Conf. Chem. Res., 17 101 (1973).
- (3) (a) R. J. Anderson, V. L. Corbin. G. Cotterrell, G. R. Cox, C. H. Henrick, F. Schaub, and J. B. Siddall, J. Am. Chem. Soc., 97, 1197 (1975); (b) W. F.
 Truce and M. J. Lusch, J. Org. Chem., 39, 3174 (1974); (c) J. F. Normant,
 G. Cahiez, M. Bourgain, C. Chuit, and J. Villeras, Bull. Soc. Chlm. Fr. 1656 (1974); (d) J. F. Normant, G. Cahiez, C. Chuit, and J. Villieras, J. Organomet. Chem., 77, 269, 281 (1974); (e) G. M. Whitesides, J. S. Fillipo, Jr., E. R. Stredronsky, and C. P. Casey, J. Am. Chem. Soc., 91, 6542 (1969); (f) G. M. Whitesides and P. E. Kendali, J. Org. Chem., 37, 3718 (1972); (g) G. M. Whitesides, C. P. Casey, and J. K. Krieger, J. Am. Chem. Soc., 93, 1379 (1971)
- (4) Recently D. E. Bergbreiter and G. M. Whitesides, J. Am. Chem. Soc., 96, 4937 (1974), reported on the formation of a ternary ate complex containing copper(), mercury(II), lithlum, *tert*-butyl, and (*S*)-sec-butyl which was optically stable at -78°. The complex racemized at temperatures above -78° (private communication from Professor G. M. Whitesides).
- (5) H. M. Walborsky and M. P. Periasamy, J. Am. Chem. Soc., 96, 3711 (1974).
- (6) There was no apparent reaction with cuprous lodide at -72°. Reaction occurred, as evident by a color change starting at -50° from pale yellow to a dark green at -20° .
- (7) The low yield is due to a copper-isocyanide complex being the major product. In later experiments, at 23°, the yields were improved by breakg up the complex with aqueous potassium cyanide.
- Unpublished results with M. P. Periasamy
- (9) A discussion of these results will be given in our full paper.


M. P. Periasamy, H. M. Walborsky*

Department of Chemistry, Florida State University Tallahassee, Florida 32306 Received June 27, 1975

Oxidation of Organometallic Compounds with Tetracyanoquinodimethan

Sir:

Complexes of tetracyanoquinodimethan¹ (TCNQ), 1, with organic donor molecules have attracted great interest because of their unusual structural and electrical properties.² This communication reports some results of a study of the reactions of TCNQ with organometallic compounds.

Shchegolev and coworkers have reported the preparation of both 1:1 and 1:2 complexes of bis(benzene)chromium with 1^3 and the crystal structures of both materials have been determined.^{4,5} We found that the analogous reaction between 1 and (toluene)chromium tricarbonyl, 2, leads to quite different products which were unanticipated on the basis of the observation that (arene)₂Cr compounds are more easily oxidized than $(arene)Cr(CO)_3$. When 2 mmol each of 1 and 2 in acetonitrile were stirred for 3 days, toluene and 3 mmol of carbon monoxide were produced, along with a deep purple, noncrystalline solid, 3. Evaporation of the solution from which 3 had separated allowed the recovery of 1 mmol of 2. Elemental analysis indicated that 3 had the composition $Cr(CH_3CN)_2(TCNQ)_2$.⁶ The conductivity of 3, measured by the microwave technique on compressed pellets, was 2.2×10^{-4} (ohm cm)^{-1.7} The infrared spectrum (Nujol mull) contained strong bands at 2100 and 2205 cm⁻¹ but no absorptions due to toluene or carbonyl groups were found. Room temperature magnetic susceptibility measurements showed $\mu_{eff} = 4.08 \ \mu_{B}$.

A similar reaction with bicyclo[2.2.1]heptadiene molybdenum tetracarbonyl with 1 in acetonitrile afforded dark purple 4, whose elemental analysis corresponded to Mo-(CO)₂(CH₃CN)₂(TCNQ), along with bicycloheptadiene and 2 equiv of carbon monoxide. Compound 4 was diamagnetic with $\mu_{eff} = 0.03 \ \mu_B$ at 298 K. The infrared spectrum contained broad bands at 2090 and 2190 cm⁻¹; no discrete carbonyl bands were observed and they may overlap the C=N stretching absorptions. No bands attributable to coordinated bicycloheptadiene were found. The conductivity was 2.3×10^{-4} (ohm cm)⁻¹.

The magnetic susceptibility of 3 indicates that it contains high spin Cr^{3+} : a higher μ_{eff} than the spin-only value for this d^3 ion may be due to a contribution from TCNQ- $^{-9,10}$ (vide infra). The presence of Cr^{3+} in 3 would require the presence of one TCNQ.- and one TCNQ²⁻ in order to maintain electroneutrality.

The Mo $3d_{3/2}$ and $3d_{5/2}$ binding energies in 4 were 233.0 and 230.7 eV, respectively. Comparison of these ESCA data with those of Hughes and Baldwin¹¹ on a variety of molvbdenum compounds suggests that 4 contains formal Mo(II). The presence of Mo(II) in this compound would again require that it be formulated as a derivative of TCNQ²⁻.

The presence of C = N stretching vibrations at 2100 cm^{-1} in 3 and 4 is also consistent with the presence of the TCNQ dianion since an absorption at lower frequencies than found in 1 (2210 cm⁻¹) or Li⁺TCNQ⁻⁻ (2190 cm⁻¹) would result from addition of electron density to the C=N π^* orbitals.

Although TCNQ can be reduced electrochemically to the dianion.^{2d,12} the only example of a solid TCNQ²⁻ salt, prepared by Basolo and coworkers, is [Co(N, N'-ethylenebis(acetylacetonimine) $(C_5H_5N)_2]_2TCNQ^{13}$ Like 3 and 4, this material exhibits ν_{CN} at low frequencies (2102 and 2151 cm⁻¹). Formation of TCNQ²⁻ salts from 1 and organometallic compounds presumably occurs by electron transfer¹⁴ followed by expulsion of the organic ligands. These results suggest that TCNQ²⁻ derivatives are readily obtainable and that 1 might be used to obtain materials having the metal in a less common oxidation state. Studies of the organometallic chemistry of TCNQ and of the magnetic and electrical properties of TCNQ²⁻ derivatives are continuing. It is of interest to note that the TCNQ dianion may be a low energy species in materials whose electrical conductivity involves fluctuations of doubly occupied ionic configurations.^{2h}

Acknowledgment. It is a pleasure to thank Dr. T. Finnegan for the conductivity measurements, Dr. G. Candela for the magnetic susceptibility data, and Drs. A. Kahn and R. Johannesen for helpful discussions.

References and Notes

- D. S. Acker and W. R. Hertier, *J. Am. Chem. Soc.*, **84**, 3370 (1962).
 (a) J. Ferraris, D. O. Cowan, V. Waiatka, and J. H. Perlstein, *J. Am. Chem. Soc.*, **95**, 948 (1973); (b) R. M. Grant, R. L. Greene, G. C. Wrigh- Chemin Soc., 34, 346 (1975), (0) n. M. Grant, n. L. Greene, G. C. Wighton, and G. Castro, *Phys. Rev. Lett.*, 31, 1311 (1973); (c) D. B. Tanner, C. S. Jacobson, A. G. Garito, and A. J. Heeger, *ibid.*, 32, 1301 (1974); (d) L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, J. Am. Chem. Soc., 84, 3374 (1962); (e) D. E. Schafer, F. Wuldi, G. A. Thomas, J. Ferraris, and D. O. Cowen, Solid State Com-mun., 14, 347 (1974); (f) R. P. Groff, A. Suna, and R. E. Merrifield, Phys. *muin.*, 14, 347 (1974); (1) H. P. Groff, A. Suna, and H. E. Merrineld, *Phys. Rev. Lett.*, 33, 418 (1974); (g) M. J. Cohen, L. B. Coleman, A. F. Garito and A. J. Heeger, *Phys. Rev. B*, 10, 1298 (1974); (h) A. F. Garito and A. J. Heeger, *Acc. Chem. Res.*, 7, 2232 (1974); (i) E. M. Engler and V. V. Patel, *J. Am. Chem. Soc.*, 96, 7377 (1974); (j) K. Bechgaard, D. O. Cowan, and A. N. Bioch, *J. Chem. Soc., Chem. Commun.*, 937 (1974); (k) Y. Tomkiewicz, B. A. Scott, L. J. Tao, and R. S. Titte, *Phys. Rev.* Lett., 32, 1363 (1974); (I) F. Herman and I. P. Batra, *Ibid.*, 33, 94 (1974); (m) W. D. Grobman, R. A. Pollack, D. E. Eastmen, E. T. Mass, and B. A. cott, ibid., 32, 534 (1974).
- (3) E. B. Yagubski, M. L. Khldekei, I. F. Shchegolev, L. I. Buravov, B. G. Gribov, and M. K. Makova, Izv. Akad. Nauk SSSR, Ser. Khim., 2124 (1968).
- (4) R. P. Shibeva, L. O. Atovmyan, and M. N. Orfanova, Chem. Commun., 1494 (1969).
- (5) R. P. Shibeva, L. O. Atovmyan, and L. P. Rozenberg, Chem. Commun., 649 (1969).
- (6) Anai. Calcd for C28H14CrN10: C, 61.99; H, 2.58; Cr, 9.59; N, 25.83. Found: C, 61.56; H, 2.37; Cr, 9.16; N, 22.02. Calcd for C₁₆H₁₀MoN₆O₂: C, 49.32, H, 2.28; Mo, 21.92; N, 19.18; O, 7.30. Found: C, 49.58; H, 2.55; Mo, 21.24; N, 19.94; O, 8.03. Both compounds are very air sensitive.